This is an ultimate completion of our earlier paper [Acta.\ Math.\ Hungar.\140 (2013), 248--292] where mapping properties of several fundamental harmonicanalysis operators in the setting of symmetrized Jacobi trigonometricexpansions were investigated under certain restrictions on the underlyingparameters of type. In the present article we take advantage of very recentresults due to Nowak, Sj\"ogren and Szarek to fully release those restrictions,and also to provide shorter and more transparent proofs of the previousrestricted results. Moreover, we also study mapping properties of analogousoperators in the parallel context of symmetrized Jacobi function expansions.Furthermore, as a consequence of our main results we conclude some new resultsrelated to the classical non-symmetrized Jacobi polynomial and functionexpansions.
展开▼